If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-60x-300=0
a = 5; b = -60; c = -300;
Δ = b2-4ac
Δ = -602-4·5·(-300)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-40\sqrt{6}}{2*5}=\frac{60-40\sqrt{6}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+40\sqrt{6}}{2*5}=\frac{60+40\sqrt{6}}{10} $
| 52x-3=17 | | -9.1f-17.16=-8f | | -2-7v=-2v-17 | | 6a+2=a-13 | | -20-7g=-2g | | 10x+7=-8 | | (Y-6)=-2(x-5) | | 20r-11=16r+9r+19 | | 31=9/x | | X=2x+44 | | 1/5x-5=x+1/3 | | 4x-20=2x80 | | 194-312a=-14a+32 | | 32.663=9k+11.363 | | -1.49+1.6v=19.63+11.6v+7.6v | | 19+10t=-1+11t | | 36=9/x+5 | | 17u-6=5u^2 | | 4x-2x+8x=10 | | 3/x-4/2x=x-1 | | 3y-40+y+20=180 | | 17.3u+5.64=16.9u | | N=9x-2 | | 6^2x+2=46656 | | 15.81+13q=9.9q-14.47-16.22 | | 7/4=24/x | | 3y+16=4 | | 5.5^2x=2500 | | -6p-4=4(5p+7)+8(8-3p) | | -16s=7-17s | | 7.8+2x=−25.12 | | -18+20b=-18+11b |